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ABSTRACT 

 

Nanostructured molybdenum trioxide (MoO3) was synthesized and used as a precursor in 

a comparative study, along with commercial MoO3, to synthesize molybdenum dioxide (MoO2) 

nanoparticles. Scanning electron microscope (SEM) images revealed the particles to be 

approximately 30-50 nm in diameter. X-ray diffraction (XRD) confirmed MoO3 was fully reduced 

to MoO2 in all cases. Time dependent experiments showed that within two hours no traces of MoO3 

are present. All of the experiments showed the materials were excellent absorbent materials, as 

well as photocatalysts. Both MoO2 materials performed almost exactly the same, with both 

samples being able to remove 100% of the methylene blue (MB) in one minute with light, and in 

two minutes without light. 

The morphology of MoO2 was controlled in a comparative study by varying the 

concentration of cetyltrimethylammonium bromide (CTAB) present during the hydrothermal 

reaction. As the concentration of CTAB increased, the morphology of the material changed from 

nanoparticles, to nanospheres, to microspheres, to hollow microspheres, and finally a highly 

agglomerated version of microspheres and particles combined, as confirmed by SEM images. A 

formation mechanism for the formation of the various sized spheres was proposed with a 

combination of aggregation and Ostwald ripening. XRD confirmed that all of the MoO3 was 

reduced to MoO2, along with no residual peaks from the CTAB that was present during the 

reaction. Upon trying to mix some of the materials into the MB solutions, it became obvious that 

some of the materials were hydrophobic. The decontamination results once again showed that the 
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synthesized MoO2 materials were not only photocatalysts, but adsorbents as well. Samples 

synthesized with 0.1-5 mM CTAB were able to remove 100% of the MB in 10 minutes or less. 

Samples synthesized with 10 mM CTAB were able to remove 54.4% and 35% of the MB in 10 

minutes, with and without light, respectively. Samples synthesized with 15 mM CTAB were able 

to remove 29.4% and 26.3% of the MB in 10 minutes, with and without light, respectively. The 

apparent decrease in decontamination performance was proposed to be caused by surface 

morphology induced hydrophobicity. A mechanism to describe why the hydrophobic particles 

were still able to decontaminate the water was proposed to be caused by coming into direct contact 

with the magnetic stirrer as the water level dropped due to sample collection. 

MoO2 nanoparticles were successfully synthesized onto a copper substrate, in a single step, 

via a hydrothermal synthesis technique. It is believed to be the first report of such a synthesis 

method. XRD confirmed all of the MoO3 had been reduced to MoO2, and also confirmed that no 

other compounds had formed between the molybdenum and copper. SEM images of the MoO2 

coated copper substrate showed uniform nanoparticles ranging from 30-50 nm. The MoO2 coated 

copper substrate was able to decontaminate 57.5% of the MB from water in 10 minutes without 

exposure to light, while it was able to decontaminate 71.7% of the MB from water in 10 minutes 

with exposure to light. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Problem Description and Motivation 

Molybdenum oxides have been proven to be a very promising material for a variety of 

applications, mainly in the world of Li-ion batteries, but there have also been a few reports using 

it to decontaminate water. There have been numerous reports of using molybdenum trioxide 

(MoO3) as a photocatalyst, and the results have been incredibly promising; however, very little 

research has been done to investigate the use of molybdenum dioxide (MoO2) for the same 

application.  

Research has shown that the morphology of a material can greatly affect its properties, and 

that surfactants are one of the most common ways to control morphology during the synthesis 

process. Yet there are very few publications currently describing the morphology controlled 

synthesis of MoO2. 

Currently, most decontamination experiments are based off of a slurry, where the active 

material is mixed in with the polluted sample to perform the decontamination. While this method 

is very effective at assuring the active material comes into contract with the pollutant, but then 

basically becomes a pollutant of its own, that must be removed from the water through filtration, 

centrifugation, etc. Ideally, the active material could be coated on a substrate that was then 

submerged in the contaminated water. After the water had been decontaminated, the substrate 

could be removed, and the water would be clean without any further processing necessary. 

The objectives of this dissertation are as follows: 
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 To investigate the decontamination of methylene blue (MB) in water using MoO3 and 

MoO2 nanoparticles. 

 To determine the effect of various amounts of surfactant on the morphology of synthesized 

MoO2 materials, and to measure the effect of the change in morphology on the 

decontamination of MB in water. 

 To synthesize MoO2 directly onto a copper substrate to decontaminate water. 

1.2 Organization of the Dissertation 

The structure of this dissertation can be summarized as follows.  

 Chapter 1 describes the problem and the motivation behind the study of decontaminating 

water using molybdenum dioxide, followed by the organization of this dissertation. 

 Chapter 2 is a literature review that covers various synthesis methods and applications for 

MoO2. The main focus of this chapter is on the ability of MoO2 to decontaminate water, however 

some very promising Li-ion battery results are also briefly discussed. 

Chapter 3 describes the synthesis and characterization of MoO2 nanoparticles using a 

MoO3 precursor. Decontamination experiments were conducted, and for the first time it was shown 

that MoO2 nanoparticles could decontaminate MB from the water, both with and without exposure 

to visible light. 

Chapter 4 describes the morphology controlled synthesis of MoO2 nanostructures by 

utilizing the assistance of a surfactant. Various morphologies were synthesized and characterized, 

and the data is arranged in a convenient table. Decontamination experiments were conducted for 

the various morphologies, and again the samples were able to decontaminate MB from the water 

with and without exposure to visible light. 
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Chapter 5 describes a novel method for the synthesis of MoO2 nanoparticles directly onto 

a copper substrate. Decontamination experiments were conducted to determine the ability of the 

MoO2 coated copper substrate to decontaminate MB from the water with and without exposure to 

visible light. 

Chapter 6 concludes the dissertation with a summary of the major findings from all of the 

chapters, along with a discussion of the future recommended research regarding the use of MoO2 

to decontaminate water.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

Molybdenum dioxide (MoO2) has been researched for a variety of applications; mainly for 

Li-ion batteries [1-21], but also for removing Cr (VI) from wastewater[22], photocatalysts [23, 

24], supercapacitors [24-26], pseudocapacitors [27], as well as a catalyst for oxidation of 

hydrocarbons [28]. There are a large variety of synthesis methods for MoO2, including 

hydrothermal [7, 14, 16, 20, 24, 29-36], solution-phase [18, 37-39], solvothermal [21, 40, 41], 

spray pyrolysis [3], nanocasting [6, 19], electrodeposition [27], rheological phase reaction [8], sol-

gel [12], chemical vapor deposition (CVD) [42], magnetron sputtering [15], immersion [43], and 

thermal decomposition [25].  Not only can MoO2 be synthesized in a variety of ways, but it also 

has variety of morphologies, ranging from nanoparticles [5, 8, 10, 12, 14, 38], nanospheres [30], 

nanobars [30], nanoflakes [30], microspheres [3, 7, 22, 23, 44], nanowires [45], and nanorods [6], 

and more.  

2.2 Use of MoO2 in the Decontamination of Water 

Huge amounts of organics waste are produced every day from various chemical and oil 

industries, textile industries, farming applications, and even at wastewater treatment facilities [46-

50]. There are more than 100,000 commercially available dyes, with over 7 x 105 tons of dye-stuff 

produced annually [50]. If and when this organic waste makes it in to contact with people, it can 

cause serious damage to the respiratory, digestive, urinary, nervous and cardiovascular systems 

[51-57].Water containing some of these pollutants can be decontaminated in a variety of ways, 
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including reverse osmosis [58, 59], centrifuge [60, 61], ultraviolet (UV)-based filtration [62, 63], 

adsorption [64, 65], precipitation [60, 66], ozone [67, 68], micro and ultra filtration [69-71], 

biological treatment [72-74], and oxidation (through the use of photocatalysts) [23, 24, 51, 74-95]. 

Photocatalysts appear to be one of the most popular methods to decontaminate water due 

to the fact that the photocatalytic reaction can be powered by the visible and/or UV light coming 

from the sun. TiO2 was the first photocatalyst discovered, back in 1969 by Fujishima and Honda 

[75]. The basic principal of a photocatalytic reaction is shown in Figure 2.1; where photons of light 

having a greater energy than the bandgap of the photocatalyst are adsorbed, transferring an electron 

from the valence band to the conduction band, generating an electron (eCB
-) hole (hVB

+) pair. These 

electron hole pairs can do one of two things, either recombine and generate heat, or react with 

available oxidants and reductants to produce OH and O2 radicals, respectively, which finally break 

the dye down into carbon dioxide and water [96-102]. 

 
Figure 2.1 Energy band gap diagram of a TiO2 spherical particle. Reprinted Journal of 

Environmental Management, Vol 98, M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, and W. 

Daud, Application of doped photocatalysts for organic pollutant degradation - A review, 78-94, 

2017, with permission from Elsevier [98]. 
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Reports on the photocatalytic properties of MoO3 have also been reported, but there are 

only two reports for photocatalytic properties of MoO2. Table 2.1 shows a summary of the 

available data for the photocatalytic properties of the various molybdenum oxide materials, along 

with a comparison to TiO2. It should be noted that during all of these photocatalytic experiments, 

the particles were mixed into the contaminated solution, and allowed to mix for at least 30 minutes 

in the dark to reach an adsorption/desorption equilibrium of the dye on the surface of the particles. 

Table 2.1 Various molybdenum oxide materials and their photocatalytic properties. 

Sample 
Sample 

Weight 

Pollutant 

(volume) 

Pollutant 

Concentration 

Source of 

irradiation 
Decontamination Time Ref. 

TiO2 
250 

mg 

Methylene 

Blue 

(250 mL) 

20 mg L-1 No light 

exposure 
<10% 

5 h 

(300 

min) 

[97] 

TiO2 
250 

mg 

Methylene 

Blue 

(250 mL) 

20 mg L-1 UV light 96% 

5 h 

(300 

min) 

[97] 

α-MoO3  50 mg 

Methylene 

Blue 

(100 mL) 

10 mg L-1 UV and 

visible light 
87% 

180 

min 
[103] 

h-MoO3  50 mg 

Methylene 

Blue 

(100 mL) 

10 mg L-1 
UV and 

visible light 
97% 

180 

min 
[103] 

MoO2 
500 

mg 

Methylene 

Blue 

 (50 mL) 

10 mg L-1 UV light 30% 
140 

min 
[24] 

MoO2 
500 

mg 

Rhodamine B 

(50 mL) 
10 mg L-1 UV light 70% 

140 

min 
[24] 

α-MoO3 
100 

mg 

Methylene 

Blue 

(100 mL) 

1000 mg L-1 Sunlight 
99.7% 

(40% in dark) 

150 

min 
[82] 

MoO3 50 mg 

Methylene 

Blue 

(100 mL) 

10 mg L-1 Visible 

light 
>90% 

40 

min 
[95] 

MoO2 25 mg 
Rhodamine B 

(50 mL) 
10 mg L-1 UV and 

visible light 
15.8% 

90 

min 
[23] 

Graphene- 

α-MoO3  
10 mg 

Methylene 

Blue  

(50 mL) 

0.01 mM UV light 
97% 

 

180 

min 
[86] 

Graphene- 

α-MoO3  
10 mg 

Methylene 

Blue  

(50 mL) 

0.01 mM 
Visible 

light 

96% 

 

240 

min 
[86] 
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While MoO2 has seen a lot of research in other fields, it is clear that very little research has 

been done in relation to the decontamination of water using MoO2. One of the few reports of 

decontamination using MoO2 is briefly summarized below. 

 MoO2 nanoparticles were synthesized via a hydrothermal synthesis technique using 

ammonium heptamolybdate, water, and ethylene glycol. The mixture was sealed in a teflon lined 

stainless steel pressure vessel and heated at 180 °C for 36 hours. The samples were dried in a 

vacuum oven at 60 °C overnight, and annealed in an argon tube furnace at 500 °C for 6 hours. The 

resulting MoO2 nanoparticles are shown in Figure 2.2 [24]. 

 
Figure 2.2 SEM images of the MoO2 samples at a) low and b) higher magnifications. Reprinted 

from Ceramics International, Vol. 42, E. Zhou, C. Wang, Q. Zhao, Z. Li, M. Shao, X. Deng, X. 

Liu, X. Xu, Facile synthesis of MoO2 nanoparticles as high performance supercapacitor electrodes 

and photocatalysts, pp. 2198-2203, Copyright 2012, with permission from Elsevier [24]. 

 

 To measure the photocatalytic properties of the MoO2 nanoparticles, 500 mg of sample 

was continuously stirred in to 50 mL of an aqueous organic dye solution with a concentration of 

10 mg L-1. The samples were allowed to mix in the dark to allow them to reach their 

adsorption/desorption equilibrium, before they were exposed to ultraviolet (UV) light from a 

500 W mercury lamp. The degradation of the dye solutions was analyzed using a UV-visible 

spectrophotometer, measuring the peak intensity of the maximum absorption wavelength. The 

2 um 400nm 

b a 
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results of the experiment are shown in Figure 2.3. The best results were 30% decontamination of 

MB, and 70% decontamination of RhB in 140 minutes.  

 
Figure 2.3 Absorption spectra of RhB (a) and MB (b) aqueous solution, the C/C0 vs. time curves 

of RhB and MB (c). Reprinted from Ceramics International, Vol. 42, E. Zhou, C. Wang, Q. Zhao, 

Z. Li, M. Shao, X. Deng, X. Liu, X. Xu, Facile synthesis of MoO2 nanoparticles as high 

performance supercapacitor electrodes and photocatalysts, pp. 2198-2203, Copyright 2012, with 

permission from Elsevier [24]. 

 

2.3 Use of MoO2 in Li-Ion Batteries 

Batteries have been around for a long time, but significant research into new battery 

chemistries has lagged behind the progress of the new devices constantly being developed. Figure 

2.4 shows a plot of volumetric energy density versus gravimetric energy density for various battery 

chemistries [104], and it is clear that lithium ion batteries (LIBs) are the most promising, and are 

a perfect fit for the new devices because of its high density energy storage [104].  
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Figure 2.4 Comparison of the different battery technologies in terms of volumetric and 

gravimetric energy density. Reprinted by permission from Macmillan Publishers Ltd: [Nature], 

Ref. [104], copyright (2001). 

A LIB consists of three main parts: the cathode, the anode and an electrolyte; which when 

combined form an electrochemical cell. These cells can then be connected in series and/or in 

parallel with other cells to produce the desired voltage and capacity, respectively [104]. The most 

common LIB configuration contains a graphite anode such as mesocarbon microbeads (MCMB), 

a lithium metal oxide cathode such as lithium cobalt oxide (LiCoO2), and an electrolyte solution 

of lithium salt, such as lithium hexafluorophosphate (LiPF6), in an organic solvent, such as 

ethylene carbonate (EC) or dimethyl carbonate (DMC) [105, 106]. A schematic of the basic layout 

is shown in Figure 2.5. 
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Figure 2.5 Schematic of the principle of LIB. Reproduced from Ref. [107] with permission of 

The Royal Society of Chemistry. 

One of the biggest challenges facing current Li-ion battery technology is the low theoretical 

capacity of the graphite anode material. When in use as an anode material, graphite provides a 

usable capacity that is less than its already low theoretical capacity of 372 mA h g-1. MoO2 appears 

to be a great candidate to replace the typical graphite anode, due to its larger theoretical capacity 

of 828 mA h g-1, low electrical resistivity of 8.8 x 10-5 Ω cm, and high density of 6.5 g cm-3 [11, 

20, 32, 108-110]. One of the major drawback to MoO2 is the intrinsic volume expansion that occurs 

during lithiation/delithiation, causing the electrode to be pulverized and lose storage capacity. This 

issue can be solved in several ways, including changing the particle morphology, or the addition 

of graphene to help buffer the massive volume changes that can occur [1-7, 22, 23, 26-28, 37, 44, 

45, 111-113]. Some of the most promising results are briefly discussed below.  

A self-assembled hierarchical MoO2/graphene nanocomposite was synthesized using a 

solution-phase process and subsequent reduction [39]. First, graphene oxide (GO) was prepared 

using a modified Hummers method, and then a GO suspension was mixed with phosphomolybdic 
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acid, DI water, and hydrazine hydrate. The resulting black powder was dried in a vacuum and 

placed into a tube furnace to form a MoO2/graphene nanocomposite, as shown in Figure 2.6 [39]. 

Rod like “maize cobs” can be seen in Figure 2.6a and 2.6b, which are approximately 1-3 µm in 

diameter and 5-10 µm in length. Upon closer inspection at high magnifications, it is clear that the 

graphene has wrapped around the 30-80 nm MoO2 particles, as shown in Figure 2.6c and 2.6d. 

 
Figure 2.6 SEM images of the self-assembled hierarchical MoO2/graphene nanocomposite. 

Reprinted with permission from Y. Sun, X. Hu, W. Luo, and Y. Huang, “Self-Assembled 

Hierarchical MoO2/Graphene Nanoarchitectures and Their Application as a High-Performance 

Anode Material for Lithium-Ion Batteries,” ACS Nano, vol. 5, no. 9, pp. 7100–7107. Copyright 

2011 American Chemical Society [39]. 

 

Figure 2.7 shows the cyclic voltammetry for the self-assembled hierarchical 

MoO2/graphene nanocomposite from 0.01 – 3 V at a scan rate of 0.1 mV s-1. There are two main 

peaks at 1.49 V and 1.2 V in the cathodic scan that are evidence of lithium insertion causing a 

phase transformation from orthorhombic to monoclinic [21, 82–83]. The peak around 0.7 V in the 

first cycle is evidence of the formation of a solid electrolyte interphase (SEI) film [39]. Evidence 

of the monoclinic to orthorhombic phase transformation has been observed due to the presence of 

the sharp peaks at 1.50 V and 1.73 V, while the peaks in subsequent cycles at 1.54/1.73 V and 
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1.24/1.50 V are evidence of the lithium insertion and extraction of partially lithiated LixMoO2 [19, 

114].  

 
Figure 2.7 Cyclic voltammogram of the self-assembled hierarchical MoO2/graphene 

nanocomposite. Reprinted with permission from Y. Sun, X. Hu, W. Luo, and Y. Huang, “Self-

Assembled Hierarchical MoO2/Graphene Nanoarchitectures and Their Application as a High-

Performance Anode Material for Lithium-Ion Batteries,” ACS Nano, vol. 5, no. 9, pp. 7100–7107. 

Copyright 2011 American Chemical Society [39]. 

Figure 2.8 shows the cycling performance of the self-assembled hierarchical 

MoO2/graphene in the range of 0.01 - 3 V, at current densities of 1000, 1500, and 2000 mA g-1. At 

a current density of 1000 mA g-1, the initial discharge and charge capacities were measured to be 

468.2 and 342.0 mA h g-1, respectively [39]. After 70 cycles at 1000 mA g-1, the capacity of the 

electrode actually increased to 597.9 mA h g-1, which is a capacity retention of approximately 

127% and may be attributed to the high active surface area as well as the buffering effects of 

graphene during volume expansion which prevents pulverization of the electrode [39, 84, 115-

119].  
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Figure 2.8 Cycling performance of the self-assembled hierarchical MoO2/graphene in the range of 

0.01 - 3 V, at current densities of 1000, 1500, and 2000 mA g-1. Reprinted with permission from 

Y. Sun, X. Hu, W. Luo, and Y. Huang, “Self-Assembled Hierarchical MoO2/Graphene 

Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion 

Batteries,” ACS Nano, vol. 5, no. 9, pp. 7100–7107. Copyright 2011 American Chemical Society 

[39]. 

A MoO2-graphene composite was synthesized via a two-step hydrothermal-calcination 

method [20]. Briefly, GO was synthesized by a modified Hummers method. After reducing the pH 

to 1 using HCl, ammonium molybdate and ascorbic acid were added to the solution. The resulting 

mixture was heated in a teflon-lined stainless steel autoclave, then washed with distilled water and 

dried. The MoO2-graphene precursor was then placed into an Argon atmosphere tube furnace to 

form a MoO2-graphene nanocomposite, shown in Figure 2.9 [20]. It is clear from the figure that 

the MoO2 particles have an average diameter of approximately 20 nm and that the graphene had 

wrapped around the particles. 
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Figure 2.9 (a-c) are SEM images, and (d-f) are TEM images of the MoO2-graphene nanocomposite. 

Reprinted from Electrochimica Acta, Vol. 79, Q. Tang, Z. Shan, L. Wang, and X. Qin, “MoO2–

graphene nanocomposite as anode material for lithium-ion batteries,” pp. 148–153, Copyright 

2012, with permission from Elsevier [20]. 

Figure 2.10 shows the cyclic voltammetry for the MoO2-graphene nanocomposite from 

0.01 – 2.5 V at a scan rate of 0.2 mV s-1. There are three main peaks at 1.52 V, 1.15 V and 0.65 V 

in the cathodic scan.  The peaks at 1.52 V and 1.15 V are evidence of lithium insertion causing a 

phase transformation from orthorhombic to monoclinic [20]. The peak around 0.65 V in the first 

cycle is evidence of the formation of a solid electrolyte interphase (SEI) film [20, 110, 120, 121]. 

The two sharp peaks in the first anodic scan at 1.50 V and 1.76 V are also evidence of the 

monoclinic to orthorhombic phase transformation [82–83][20], while the peaks in subsequent 
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cycles at 1.52/1.76 V and 1.23/1.50 V are evidence of the lithium insertion and extraction of 

partially lithiated LixMoO2 [20].  

 
Figure 2.10 Cyclic voltammogram of the MoO2-graphene nanocomposite. Reprinted from 

Electrochimica Acta, Vol. 79, Q. Tang, Z. Shan, L. Wang, and X. Qin, “MoO2–graphene 

nanocomposite as anode material for lithium-ion batteries,” pp. 148–153, Copyright 2012, with 

permission from Elsevier [20]. 

Figure 2.11 shows the cycling performance of the MoO2/graphene nanocomposite in the 

range of 0.01 – 2.5 V, at current densities of 100 and 500 mA g-1. At a current density of 

100 mA g-1, the initial discharge and charge capacities were measured to be 674.4 and 

429.9 mA h g-1, respectively [20]. After 50 cycles at 100 mA g-1, the capacity of the electrode 

actually increases to 1013.7 mA h g-1, and at 60 cycles the capacity is still 1009.9 mA h g-1, which 

is higher than the theoretical capacity of bulk MoO2 (828 mA h g-1) [20, 110]. The MoO2-graphene 

electrode had a capacity retention of approximately 150%, which may be attributed to the extra Li 

captured due to the reversible reaction of the –OH and –COOH surface groups of the graphene 

and the Li [20]. The performance of the nanocomposite is great, however without the graphene the 
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MoO2 only had an approximate capacity of 300 mA h g-1, compared to over 1000 mA h g-1 when 

combined with graphene. 

 
Figure 2.11 Cycling performance of the MoO2-graphene nanocomposite from 0.01-2.5 V at 100 

and 500 mA g-1, with an insert of the cycling performance of both pure Graphene and pure MoO2 

at 100 mA g-1. Reprinted from Electrochimica Acta, Vol. 79, Q. Tang, Z. Shan, L. Wang, and X. 

Qin, “MoO2–graphene nanocomposite as anode material for lithium-ion batteries,” pp. 148–153, 

Copyright 2012, with permission from Elsevier [20]. 

A MoO2/graphene nanocomposite was synthesized using a low temperature solution-phase 

reduction process [37]. Briefly, GO was prepared using a modified Hummers method and was then 

mixed with ammonium heptamolybdate ((NH4)6Mo7O24*4H2O), water, citric acid and 

poly(ethylene glycol) (PEG). . The resulting mixture was heated in a Teflon-lined stainless steel 

autoclave, resulting in a black MoO2/graphene, which was then washed and dried in an inert 

atmosphere. Figures 2.12a and 2.12b are low and high magnification SEM images of the GO, 

respectively, showing the layered structure that is typical of graphene. Figure 2.12c is an SEM 

image of pure MoO2 showing particles that interconnected with non-uniformed sized grains. Low 

and high magnification SEM images of the MoO2/graphene nanocomposite are shown in Figure 

2.12d and 2.12e, respectively, where the graphene appears to have fully penetrated the MoO2. 
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Figure 2.12f is an elemental map of C, O, and Mo, as well as an EDS spectrum of the 

MoO2/graphene nanocomposite. It is clear from the elemental maps that the graphene is uniformly 

distributed amongst the MoO2 particles. The EDS spectrum shows only the presence of Mo, C, 

and O, indicating a complete reaction with no leftover contaminants.  

 
Figure 2.12 (a) and (b) are low and high magnification SEM images or pure graphene, (c) is an 

SEM image of pure MoO2, (d) and (e) are low and high magnification SEM images of the 

MoO2/graphene nanocomposite, and (f) is an elemental map of Mo, C, and O with an EDS of the 

MoO2/graphene nanocomposite. Reprinted from Journal of Power Sources, Vol. 216, Bhaskar, A., 

M. Deepa, T.N. Rao, and U.V. Varadaraju, Enhanced nanoscale conduction capability of a 

MoO2/Graphene composite for high performance anodes in lithium ion batteries, pp. 169-178., 

Copyright 2012, with permission from Elsevier [37]. 

Figure 2.13 shows the cyclic voltammetry for the MoO2/graphene nanocomposite from 

0.01 – 3 V at a scan rate of 0.1 mV s-1. There are three main peaks at 1.56 V, 1.28 V and 0.7 V in 

the first cathodic scan. The peaks at 1.52 V and 1.15 V are evidence of lithium insertion causing a 

phase transformation from orthorhombic to monoclinic [37, 114]. The peak around 0.7 V in the 

first cycle is evidence of the formation of a solid electrolyte interphase film. The peaks in 
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subsequent cycles at 1.52/1.73 V and 1.26/1.51 V are evidence of the lithium insertion and 

extraction of partially lithiated LixMoO2 [37].  

 
Figure 2.13 Cyclic voltammogram of the MoO2/graphene nanocomposite. Reprinted from Journal 

of Power Sources, Vol. 216, Bhaskar, A., M. Deepa, T.N. Rao, and U.V. Varadaraju, Enhanced 

nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in 

lithium ion batteries, pp. 169-178., Copyright 2012, with permission from Elsevier [37]. 

Figure 2.14 shows the cycling performance of the MoO2/graphene nanocomposite in the 

range of 0.01 – 3.0 V, at a current density of 540 mA g-1. The initial discharge and charge capacities 

were measured to be 1450 and 703.7 mA h g-1, respectively. After 83 cycles at 540 mA g-1, the 

capacity of the electrode actually increases to 769.3 mA h g-1. After 1000 charge-discharge cycles 

the MoO2/graphene, the capacity is still 530 mA h g-1 [37]. The MoO2/graphene nanocomposite 

exhibited a capacity retention of approximately 75%, even after 100 cycles. The enhanced 

retention of the material is most likely due to the graphene layers preventing agglomeration of the 

MoO2 nanoparticles, therefore reducing the amount of volume expansion during lithiation as well 

as increasing the charge transfer and transport [37].  
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Figure 2.14 Cycling performance of the MoO2/graphene nanocomposite. Reprinted from Journal 

of Power Sources, Vol. 216, Bhaskar, A., M. Deepa, T.N. Rao, and U.V. Varadaraju, Enhanced 

nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in 

lithium ion batteries, pp. 169-178., Copyright 2012, with permission from Elsevier [37]. 

2.4 Conclusion 

 Out of all of the available methods to synthesize MoO2, the hydrothermal synthesis method 

seems to be most popular, simply judging by the number of papers published using that method. 

The hydrothermal method is probably most popular due to its simplicity and ability to produce the 

desired material in a single step. A lot of the other methods require large vacuum chambers, 

expensive chemicals, or require constant human supervision. With the hydrothermal synthesis 

technique, all of the necessary precursors are simply added to the pressure vessel, sealed and then 

placed in the oven for the desired amount of time. This allows for more work to be done while the 

material is being synthesized.  

It is clear that MoO3 is an excellent photocatalysts, in most cases removing >90% of the 

pollutant within 3 hours. While MoO3 certainly appears to be very promising materials for the 

decontamination of organic pollutants from water, not enough research has been done with MoO2 



www.manaraa.com

20 

 

to be able to determine its decontamination abilities. However, MoO2 has been proven to be a very 

capable anode material for Li-ion batteries, especially when mixed with graphene to overcome the 

volume expansion and pulverization that would normally occur. It has a theoretical energy storage 

capacity more than twice the standard graphite anode, as well as superior cyclability.  
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CHAPTER 3: SYNTHESIS AND CHARACTERIZATION OF MoO2 NANOPARTICLES  

 

AND THEIR ABILITY TO DECONTAMINATE WATER 

 

3.1 Introduction 

 The decontamination of wastewater containing pollutants, such as organic dyes, 

specifically from the textile industry, has become a huge research area. Worldwide, the textile 

industry is responsible for up to 20% of the dyes used, followed by paper printing, leather 

production, photography, coating, and photochemical industries [122, 123]. Not only are these 

dyes toxic, carcinogenic and mutagenic, but the presence of these dyes in water can cause a 

depletion of dissolved oxygen, causing even more issues. Some estimates show that 10-15% of the 

dye used in the textile processing industry are lost into the effluent [124, 125].  

 As more research is conducted in this area, new materials are constantly being discovered 

to decontaminate the dyes from water. While there have been numerous reports of the use of 

Molybdenum oxide (MoO3) to decontaminate water [79, 82, 86, 90, 92, 95, 103, 126], there have 

only been a couple reports of the use of MoO2 to decontaminate water, however the results have 

been promising [23, 24]. In this paper, we have synthesized nanostructured MoO3 and MoO2 and 

tested their abilities to decontaminate methylene blue (MB) from an aqueous solution. 

3.2 Experimental 

3.2.1 Synthesis 

 MoO3, ammonium molybdate (AM), and ethylene glycol (EG) were purchased from Sigma 

Aldrich and used without any modification unless otherwise noted. 
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3.2.1.1 Synthesis of Nanostructured Molybdenum Trioxide (AM-MoO3) 

 Ammonium molybdate was heated in an oven at 350 °C for 12 hours to form 

nanostructured MoO3, which was labeled AM-MoO3 to distinguish it from the commercially 

produced MoO3 from Sigma Aldrich. 

3.2.1.2 Synthesis of Molybdenum Dioxide (MoO2)  

 Two sets of experiments were conducted to synthesize MoO2; one set of experiments using 

MoO3, and the other set of experiments using the nanostructured AM-MoO3. 

Initially 75 mg of either MoO3 or AM-MoO3 was continuously stirred into 7.5 mL of 

deionized water and 2.5 mL of ethylene glycol. The mixture was added to a teflon lined stainless 

steel pressure, sealed, and heated at 180 °C for 12 hours. The resulting reaction produced a black 

powder that was subsequently separated via centrifugation and cleaned with ethanol and deionized 

water. The powder was then dried overnight in an oven at 80 °C. Figure 3.1 shows a schematic of 

the MoO3 reduction to MoO2 nanoparticles using ethylene glycol as the reducing agent.  

 
Figure 3.1 Schematic of the reduction of MoO3 to MoO2. 

 A summary of the various experiments conducted is shown in Table 3.1. 
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Table 3.1 Summary of MoO2 synthesis experiments. 

Sample 
Amount of MoO3 or 

AM-MoO3 (mg) 
Amount of H2O (mL) Amount of EG (mL) 

Time 

(hours) 

MoO2 75 7.5 2.5 12 

AM-MoO2 75 7.5 2.5 12 

MoO2-2h 75 7.5 2.5 2 

MoO2-4h 75 7.5 2.5 4 

MoO2-6h 75 7.5 2.5 6 

MoO2-8h 75 7.5 2.5 8 

 

3.2.2 Characterization  

 X-ray diffraction (XRD) patterns were collected from the samples using a PANalytical 

X'Pert PRO diffractometer with CuKα radiation (λ=1.5406 Å). Scanning electron microscope 

(SEM) images were acquired with a Hitachi SU-70 ultra-high resolution SEM at various operating 

voltages.  High resolution transmission electron microscope (HR-TEM) images were acquired 

with a FEI TECNAI F20 TEM at 200kV. 

3.2.3 Water Decontamination Setup 

 The degradation of an aqueous solution of methylene blue (MB) was used to determine the 

ability of the samples to decontaminate organic pollutants from water with and without exposure 

to visible light. Visible light was provided by a 30 watt light bulb with an intensity of 800 W/m2. 

To prepare the aqueous MB solution, 10mg of MB was continuously stirred in to 1 L of water, 

yielding a concentration of 10 mg L-1, which is a commonly used concentration for degradation 

experiments [24, 95, 103]. In a typical decontamination experiment, 5mg of sample material were 

continuously stirred in to 10 mL of MB solution. Samples were collected at 1 minute intervals for 

5 minutes, and a final sample was collected at 10 minutes. The samples were immediately placed 

into the centrifuge upon collection to minimize any extra time the particles were exposed to the 

contaminant. Once the sample material had been separated from the MB solution, the MB solution 

was analyzed using a Jasco J-530 UV-Vis Spectrophotometer to determine the concentration of 
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MB remaining in the solution, using the characteristic absorption peak of MB around 661 nm. A 

step-by-step schematic of this process is shown in Figure 3.2. 

 
Figure 3.2 Step-by-step schematic of the typical MB degradation experiment, sample collection 

and analysis process. 

 

3.3 Results and Discussion 

3.3.1 Electron Microscopy 

 An SEM image of the commercial MoO3 is shown in Figure 3.3a. The image reveals the 

material has a platelet like structure, with large particles up to 20 µm long. Meanwhile, an SEM 

image of the AM-MoO3 is shown in Figure 3.3b, where it is clear that the AM-MoO3 still has the 

same platelet-like structure as the commercial MoO3, except the platelets are now nano-sized. The 
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nanostructured AM-MoO3 platelets are a few hundred nanometers wide, with the largest particles 

around 1µm long. It is also clear from the SEM images that the AM-MoO3 seems to be much more 

uniform in size and shape compared to the commercial MoO3. Figure 3.3c shows an SEM image 

of the hydrothermally synthesized MoO2 nanoparticles. It is clear that the MoO2 nanoparticles are 

relatively uniform in shape and size, with most particles ranging from 30 to 50 nm. Figure 3.3d 

shows an SEM image of the AM-MoO2 nanoparticles ranging from 30 to 50 nm. It is clear that 

there are no longer any AM-MoO3 platelets present, indicating all of the AM-MoO3 has been 

reduced to MoO2, as also confirmed by XRD. 

 
Figure 3.3 SEM images of a) MoO3, b) AM-MoO3, c) MoO2, and d) AM-MoO2. 

A TEM image of the hydrothermally synthesized MoO2 is shown in Figure 3.4. Both the 

TEM image and the inset diffraction pattern show an atomic d-spacing of approximately 1.7, 2.4 
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and 3.4 Å, which correspond to the (-111), (111) and (022) planes of monoclinic MoO2, 

respectively. The d-spacing values obtained from the TEM match the d-spacing results obtained 

from XRD, further confirming the formation of monoclinic MoO2. 

 
Figure 3.4 HR-TEM image of MoO2, with the selected area diffraction pattern inset. 

The results from the time dependent experiment are shown in Figure 3.5. The 2 hour sample 

shown in Figure 3.5a clearly shows that the MoO3 platelets had already been reduced to form 

MoO2 nanoparticles, however a few larger pieces are still present. As the reaction time progresses 
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to 4 hours or more, it is clear that the MoO3 platelets have been completely reduced, leaving only 

uniform MoO2 nanoparticles, as confirmed by XRD.  

 
Figure 3.5 SEM images of MoO2 after a reaction time of a) 2 hours, b) 4 hours, c) 6 hours and d) 

8 hours. 

 

3.3.2 X-ray Diffraction (XRD) 

 XRD patterns for MoO3, AM-MoO3, MoO2, and AM-MoO2 are shown in Figure 3.6. Both 

the MoO3 and AM-MoO3 powders can be indexed to the orthorhombic phase of MoO3; with major 

characteristic diffraction peaks at 12.77°, 23.33°, 25.70°, 27.32°, and 38.97°, which correspond to 

the (020), (110), (040), (021), and (060) planes, respectively. The diffraction peaks for AM-MoO3 

are less intense and slightly broader that the diffraction peaks for MoO3, indicating the AM-MoO3 

has a smaller crystallite/particle size, as later confirmed by SEM. The diffraction patterns for both 
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MoO2 and AM-MoO2 can be indexed to the monoclinic phase of MoO2, with major characteristic 

peaks at 26.11°, 36.75°, 53.69°, which correspond to the (-111), (200),and (022) planes, 

respectively. Again it is clear that the diffraction peaks for both MoO2 and AM-MoO2 have an 

even lower intensity and are even broader than the diffraction peaks for AM-MoO3, indicating 

even smaller crystallite/particle size, as later confirmed by SEM.  

 
Figure 3.6 XRD patterns for the various samples. 

 XRD patterns for the time dependent experiments are shown in Figure 3.7. It is clear that 

within 2 hours all of the MoO3 has been completely reduced to MoO2, as there are no longer any 

characteristic diffraction peaks related to MoO3. 
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Figure 3.7 XRD patterns for the time dependent experiments.  

3.3.3 Decontamination  

 To determine the ability of the samples to decontaminate organic pollutants from water, 

experiments were conducted to measure the degradation of MB. Until now, all previous reports of 

MoO2 and MoO3 for the decontamination of water have been photocatalytic, requiring the sample 

be exposed to ultraviolet (UV) or visible light radiation. In these previous decontamination 

experiments the sample was mixed in to the MB solution with no exposure to light, and allowed 

to mix for at least 30 minutes to come to an adsorption/desorption equilibrium. At that point, the 

samples were then exposed to either UV or visible light radiation for a determined period of time 

[24, 79, 82, 86, 90, 92, 95, 103]. When this same experiment was attempted with the 

hydrothermally synthesized MoO2 and AM-MoO2 detailed above, the MB had been completely 
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decontaminated by the end of the 30 minute adsorption/desorption equilibrium. At that point, it 

became clear that the MoO2 and AM-MoO2 materials were highly adsorbent; so the experiment 

was modified to see how quickly the samples could adsorb the MB, and if the exposure of visible 

light affected the rate at which the MB was decontaminated.  

 For this decontamination experiment, 2 sets of experiments were conducted; one set with 

exposure to visible light radiation and one set with no exposure to light. Typically, 5 mg of sample 

was added to 10 mL of MB (10 mg L-1) under continuous stirring. The concentration of MB was 

monitored using UV-visible spectrophotometry, and measuring the maximum absorbance at the 

characteristic wavelength of MB, near 661 nm, as shown in Figure 3.8. The initial concentration, 

C0, of MB was measured before any material was added, and then the concentration was measured 

from the samples collected in 1 minute intervals. 

 
Figure 3.8 UV-visible absorption spectra for AM-MoO3 with no light exposure. 
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Figure 3.9 shows a plot of the concentration, C, over time that has been normalized to the 

initial MB concentration (C/C0).  

 
Figure 3.9 Concentration (C/C0) vs. time (min) for the decontamination of 10 mL MB by 5 mg of 

sample. 

 

With no exposure to light, the MB is degraded less than 0.5% during the 10 minute period. 

If exposed to light, the MB degraded about 5% during that same 10 minute period, leaving 95% 

of the MB remaining. When MoO3 was added to a MB solution, with no visible light exposure, 

over 90% of the MB was adsorbed within the first 3 minutes, and 93.7% adsorbed by the end of 

10 minutes. When MoO3 was added to a MB solution, with visible light exposure, over 93% of the 

MB was removed within the first 3 minutes, and 96.7% removed by the end of 10 minutes. When 

AM-MoO3 was added to a MB solution, with no visible light exposure, 89% of the MB was 
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adsorbed within the first minute, and 92.3% adsorbed by the end of 10 minutes. When AM-MoO3 

was added to a MB solution, with visible light exposure, over 94% of the MB was removed within 

the first minute, and over 99.4% removed by the end of 10 minutes. When MoO2 was added to a 

MB solution, with or without visible light exposure, 100% of the MB was removed within 1 

minute. The same thing happened when AM-MoO2 was added to a MB solution; regardless of 

light exposure, 100% of the MB was removed within 1 minute. A summary of these results is 

shown in Table 3.2. 

Table 3.2 Decontamination results for 5 mg of sample in 10 mL MB (10 mg L-1) 

Sample 
Amount of MB 

decontaminated 
Time 

Blank - No light exposure 0.05% 10 min 

Blank - Visible light exposure 5.1% 10 min 

MoO3 - No light exposure 93.7% 10 min 

MoO3 - Visible light exposure 96.7% 10 min 

AM-MoO3 - No light exposure 92.3% 10 min 

AM-MoO3 - Visible light exposure 99.4% 10 min 

MoO2 - No light exposure 100% 1 min 

MoO2 - Visible light exposure 100% 1 min 

AM-MoO2 - No light exposure 99.95 1 min 

AM-MoO2 - Visible light exposure 100% 1 min 

 

Since both the MoO2 and AM-MoO2 performed the exact same for the previous 

experiment, the experiment was modified again to test 5 mg of sample in 50 mL of MB with 

exposure to: visible light radiation, UV light radiation, and no light exposure. It is clear from Figure 

3.10 that both the MoO2 and AM-MoO2 performed incredibly well, and that the MoO2 was able to 

absorb 99.6% of the MB within one minute, and 100% within two minutes, with no exposure to 

visible light. When the MoO2 was exposed to visible light, it was able to remove 100% of the MB 

within the first minute. The AM-MoO2 was able to absorb 99.95% of the MB within one minute, 

and 100% within two minutes, with no exposure to visible light. When the AM-MoO2 was exposed 

to visible light, it was able to remove 100% of the MB within the first minute. 
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Figure 3.10 Concentration (C/C0) vs. time (min) for the decontamination of 50 mL MB by 5 mg 

of sample. 

 

A summary of these results is shown in Table 3.3. 

Table 3.3 Decontamination results for 5 mg of sample in 50 mL of MB (10 mg L-1). 

Sample 
Amount of MB 

decontaminated in 1 min 

Amount of MB 

decontaminated in 2 min 

MoO2 - No light exposure 99.56% 100% 

MoO2 - Visible light exposure 100% N/A 

MoO2 - UV light exposure 99.82 100% 

AM-MoO2 - No light exposure 99.95% 100% 

AM-MoO2 - Visible light exposure 100% N/A 

AM-MoO2 - UV light exposure 100% N/A 

 

 To determine how the MB and MoO2 were bonding with each other, FTIR measurements 

were taken and are shown in Figure 3.11. It is clear that the ethylene glycol has functionalized the 

MoO2, as indicated by the peaks around 2900, 1600, and 800 cm-1. 
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Figure 3.11 FTIR data showing the functionalization of MoO2. 

 Figure 3.12 shows a possible mechanism for the adsorption of MB onto the MoO2 due to 

the functionalization from ethylene glycol, where oxygen from the MoO2 and sulfur from the MB 

are attracted due to having the opposite charge. In the presence of visible light, the oxygen transfers 

an electron to the sulfur, generating an electron hole pair. This electron hole pair can than react 

with available oxidants and reductants to form radials, which cause the MB to be broken down 

into CO2, H2O, and other byproducts. 

 
Figure 3.12 Possible mechanism for the adsorption and photocatalytic remediation of MB. 



www.manaraa.com

35 

 

Table 3.4 shows a comparison of the results obtained in this report versus the previously 

reported data for the decontamination of water using MoO2. It is clear that the results from the 

MoO2 nanoparticles from this report are significantly better than previous reports.  

Table 3.4 Comparison of decontamination results with previously published data. 

Sample 
Sample 

Weight 

Pollutant 

(volume) 

Pollutant 

Concentration 

Source of 

irradiation 
Decontamination Time Ref. 

MoO2 500 mg 

Methylene 

Blue 

 (50 mL) 

10 mg L-1 UV light 30% 
140 

min 
[24] 

MoO2 500 mg 
Rhodamine B 

(50 mL) 
10 mg L-1 UV light 70% 

140 

min 
[24] 

MoO2 25 mg 
Rhodamine B 

(50 mL) 
10 mg L-1 UV and 

visible light 
15.8% 

90 

min 
[23] 

MoO2 5 mg 

Methylene 

Blue 

 (50 mL) 

10 mg L-1 
No light 

exposure 
100% 

2 

min 

This 

work 

MoO2 5 mg 

Methylene 

Blue 

 (50 mL) 

10 mg L-1 Visible light 100% 
1 

min 

This 

work 

MoO2 5 mg 

Methylene 

Blue 

 (50 mL) 

10 mg L-1 UV light 100% 
2 

min 

This 

work 

AM- 

MoO2 
5 mg 

Methylene 

Blue 

 (50 mL) 

10 mg L-1 
No light 

exposure 
100% 

2 

min 

This 

work 

AM- 

MoO2 
5 mg 

Methylene 

Blue 

 (50 mL) 

10 mg L-1 Visible light 100% 
1 

min 

This 

work 

AM- 

MoO2 
5 mg 

Methylene 

Blue 

 (50 mL) 

10 mg L-1 UV light 100% 
1 

min 

This 

work 

 

3.4 Conclusion 

 MoO2 nanoparticles were hydrothermally synthesized using MoO3 or nanostructured AM-

MoO3 as the molybdenum precursor. SEM and TEM were used to determine the size and 

morphology of the particles, while XRD was used to confirm composition and crystallinity of the 

samples. During the decontamination experiments, it became obvious that the synthesized MoO2 

and AM-MoO2 samples appear to have both adsorbent properties and photocatalytic properties; 
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something that has not been previously reported. In every single experiment conducted, the same 

sample always decontaminated the MB faster when exposed to light. Even with only 5 mg of 

sample in 50 mL of MB (10 mg L-1), both materials were able to adsorb 100% of the MB within 2 

minutes when not exposed to light, and in only one minute when the samples were exposed to 

visible light. The best results were able to remove 100% of the MB using up to 100 times less 

sample (500 mg vs. 5 mg), and up to 140 times less time (140 min vs. 1 min) than previously 

reported. 
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CHAPTER 4: MORPHOLOGY CONTROLLED 

 

SYNTHESIS OF MoO2 NANOSTRUCTURES AND THEIR ABILITY TO 

 

DECONTAMINATE WATER  

 

4.1 Introduction 

The controlled morphology of a material during the synthesis process is one of the biggest 

challenges in nanoscience and nanotechnology, since the size and shape of the synthesized material 

can greatly change the properties of a material [7, 22, 35, 127-135]. Cetyltrimethylammonium 

bromide (CTAB) is a commonly used cationic surfactant employed to modify the morphology of 

materials [134-146]. There have been several detailed reports of using CTAB to modify MoO3 

[134, 140], but there appears to be very few reports for using CTAB to modify MoO2 [147], and 

none of the reports for MoO2 have shown how concentration of CTAB will affect the morphology 

of the material. 

Herein, we present a simple, one-step hydrothermal synthesis method for various MoO2 

morphologies, including nanoparticles, nanospheres, and microspheres (solid and hollow). We 

have proposed a possible formation mechanism, as well as tested the materials ability to 

decontaminate methylene blue (MB) from water, with and without exposure to visible light. 

4.2 Experimental 

All chemicals were purchased from Sigma Aldrich and used without any modification 

unless otherwise noted.  
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4.2.1 Synthesis of Molybdenum Dioxide (MoO2)  

Initially 75 mg of MoO3 was added to 7.5 mL of various concentrations of 

cetyltrimethylammonium bromide (CTAB) under magnetic stirring. The concentrations of CTAB 

ranged from 0.1, 0.5, 1, 2.5, 5, 10, and 15 millimolar (mM). Then 2.5 mL of ethylene glycol was 

added to the mixture under continued stirring. The mixture was poured into a teflon lined stainless 

steel pressure vessel and heated at 180 °C for 12 hours. The resulting reaction produced a black 

precipitate, which was then separated and cleaned via centrifugation with ethanol and DI water. 

The resulting powder was dried overnight in an oven at 80 °C. The samples were labeled 0.1 mm 

MoO2, 0.5 mm MoO2, 1 mm MoO2, etc.  

4.2.2 Characterization 

 A PANalytical X'Pert PRO diffractometer with Cu Kα radiation (λ=1.5406 Å) was used to 

collect x-ray diffraction (XRD) patterns from the samples. A Hitachi SU-70 ultra-high resolution 

scanning electron microscope (SEM) was used to acquire SEM images of the samples. And an FEI 

TECNAI F20 transmission electron microscope (TEM) was used to acquire TEM images. 

4.2.3 Water Decontamination Setup 

To measure the ability of the samples to decontaminate organic pollutants from water, the 

degradation of an aqueous methylene blue (MB) solution was measured with and without exposure 

to visible light. A 30 watt lightbulb with an intensity of 800 W/m2 was used as the visible light 

source. In a typical setup, 5mg of the synthesized sample was continuously stirred in to 10 mL of 

MB (10 mg L-1). Samples were collected once per minute for the first 5 minutes, and a final sample 

was collected at 10 minutes. An initial sample of MB was collected before the addition of any 

particles. The samples were than analyzed using a Jasco J-530 UV-Vis Spectrophotometer to 

determine the concentration of MB remaining in the water. 
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4.3 Results and Discussion 

4.3.1 Electron Microscopy 

 Figures 4.1a and 4.1b show SEM images of the MoO3 precursor. It is clear from the image 

that the MoO3 consists of relatively large platelets that are up to 20 µm in length, with smaller 

platelets mixed in. Figure 4.1c and 4.1d show SEM images of the hydrothermally synthesized 

0.1 mM CTAB MoO2. It is clear from the image that there is no hierarchy to the 0.1 mM CTAB 

MoO2 nanoparticles, which ranged in size from approximately 30-50 nm. It is also clear from the 

SEM images that there are no MoO3 platelets visible in the synthesized material, indicating a 

complete conversion from MoO3, as later confirmed by XRD.  

 
Figure 4.1 SEM images of MoO3 (a & b) and 0.1 mM CTAB MoO2 (c & d). 
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 Figures 4.2a and 4.2b show SEM images of 0.5 mM CTAB MoO2, while Figures 4.2c and 

4.2d show SEM images of 1 mM CTAB MoO2. The 0.5 mM CTAB MoO2 sample clearly formed 

nanoparticles that ranged from approximately 40-70 nm, which appear to have no hierarchy. While 

the 1 mM CTAB MoO2 samples formed nanospheres that ranged from 150-250 nm. The 

nanospheres were made of nanoparticles that ranged from 20-30 nm. Just like with the previous 

experiments, none of the MoO3 platelet structure are present, indicating a complete conversion 

from MoO3. 

 
Figure 4.2 SEM images of 0.5 mM CTAB MoO2 (a & b), and 1 mM CTAB MoO2 (c & d). 

 Figures 4.3a and 4.3b show SEM images of 2.5 mM CTAB MoO2. It is immediately clear 

that this sample has a completely different morphology compared to the previous experiments. It 

consisted of nanospheres approximately 180-250 nm in diameter. Those nanospheres are actually 
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composed of 10-30 nm nanoparticles. Figure 4.3c and 4.3d show SEM images of 5 mM CTAB 

MoO2. In this case the morphology is completely different yet again; microspheres are clearly 

visible, with diameters ranging from approximately 2-7 µm. Upon closer inspection the 

microspheres are actually made of nanoparticles that range in size from 20-40 nm.  

 
Figure 4.3 SEM images of 2.5 mM CTAB MoO2 (a & b), and 5 mM CTAB MoO2 (c & d). 

Figures 4.4a and 4.4b show SEM images of 10 mM CTAB MoO2, which reveals hollow 

microspheres with diameters ranging from 1-3 µm, and a thickness of approximately 100-150 nm. 

Figure 4.4b reveals the microspheres are made of nanoparticles ranging in size from 40-50 nm. 

Figures 4.4c and 4.4d show SEM images of 15 mM CTAB MoO2, where the morphology has 

changed yet again. In this case there are 2-5 µm microspheres visible, but they are entangled in a 

heavily agglomerated mass of 10-20 nm nanoparticles. 
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Figure 4.4 SEM images of 10 mM CTAB MoO2 (a & b), and 15 mM CTAB MoO2 (c & d). 

A summary of the various morphologies of the synthesized CTAB MoO2 is shown in Table 

4.1. 

Table 4.1 Summary of the morphology of the synthesized CTAB MoO2 nanomaterials 

Sample Morphology Size 

0.1 mM MoO2 Nanoparticles 30-50 nm 

0.5 mM MoO2 Nanoparticles 40-70 nm 

1 mM MoO2 Nanospheres (made of nanoparticles) 120-260 nm (20-50 nm) 

2.5 mM MoO2 Nanospheres (made of nanoparticles) 180-250 nm (10-20 nm) 

5 mM MoO2 Microspheres (made of nanoparticles) 1-6 µm (20-30 nm) 

10 mM MoO2 
Hollow microspheres (made of 

nanoparticles) 
1-3 µm (40-50 nm) 

15 mM MoO2 Microspheres (highly agglomerated) 2-5 µm (10-20nm) 

 

To further investigate the formation mechanism of the microspheres, time dependent 

experiments were conducted to analyze the various morphologies throughout the synthesis 
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process. Samples were prepared for 4, 6, and 8 hours using 5 mM CTAB. SEM images of the time 

dependent experiments using 5 mM CTAB are shown in Figure 4.5.  

 
Figure 4.5 SEM images of 5 mM CTAB MoO2 synthesized for a) 4 hours, b) 6 hours and c) 8 

hours. 

 

The growth and formation of the spheres appear to be a combination of aggregation and 

the very well-known Ostwald ripening process [22, 35, 41, 61, 148], as shown in Figure 4.6. 

 
Figure 4.6 Schematic representation of the formation mechanism of the MoO2 nano- and 

microspheres. 
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4.3.2 X-ray Diffraction (XRD) 

 To collect the XRD patterns, the various synthesized powders were coated on to a zero 

background diffraction holder using isopropyl alcohol as a solvent. The samples were then scanned 

from 5-80° in 2θ axis, with a step size of 0.02 ° and a scan step time of 1 second, for a total time 

of approximately 62 minutes. Figure 4.7 shows the XRD patterns collected from the MoO3 

precursor, the CTAB surfactant, and the various MoO2 materials synthesized.  

 
Figure 4.7 XRD patterns for the various MoO2 materials using CTAB. a) CTAB, b) MoO3, c) 

MoO2, d) 0.1 mM CTAB MoO2, e) 0.5 mM CTAB MoO2, f) 1 mM CTAB MoO2, g) 2.5 mM 

CTAB MoO2, h) 5 mM CTAB MoO2, i) 10 mM CTAB MoO2, j) 15 mM CTAB MoO2 

 

The XRD pattern for CTAB can be indexed to a monoclinic phase of CTAB, with the major 

diffraction peaks at 10.21°, 13.63° 17.06°, 20.51°, 23.97° correspond to the (300), (400), (500), 

(600), and (700) planes, respectively. The XRD patterns obtained for MoO3 can be indexed to an 
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orthorhombic phase of MoO3, with characteristic diffraction peaks at 12.77°, 23.33°, 25.70°, 

27.32°, and 38.97°, that correspond to the (020), (110), (040), (021), and (060) planes, respectively. 

The pattern for the pristine MoO2 can be indexed to a monoclinic phase of MoO2, with the 

characteristic diffraction peaks at 26.11°, 36.75°, 41.50°, 53.69°, and 70.04°, which correspond to 

the (-111), (200), (-210), (022), and (-232) planes, respectively. It is clear that the synthesized 

MoO2 materials have no diffraction peaks related to the precursors, indicating a complete reduction 

of MoO3 to MoO2 in all cases. In general, as the concentration of CTAB increased, the diffraction 

peaks for the MoO2 samples with CTAB became less broad compared to pristine MoO2 indicating 

a larger crystallite size, as confirmed by the SEM images. 

Figure 4.8 shows XRD patterns for 5 mM CTAB MoO2 samples synthesized for 4, 6, 8 and 

12 hours to see the reduction of MoO3 over time. It is clear that the MoO3 has been completely 

reduced to MoO2 within 4 hours. As the reaction time increased, the diffraction peaks became 

slightly less broad and more intense, as the nanoparticles came together to form the larger 

microspheres, as confirmed by the SEM images. 

 
Figure 4.8 XRD patterns for the time dependent experiment with 5 mM CTAB MoO2. a) MoO3, 

b) 5 mM MoO2-4 hours, c) 5 mM MoO2-6 hours, d) 5 mM MoO2-8 hours, e) 5 mM MoO2-4 hours. 
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4.3.3 Decontamination 

 While conducting the decontamination experiments, it became obvious some of the 

materials were hydrophobic. As some of the samples were added to the continuously stirred MB 

solution, they simply formed a layer on top of the surface, preventing most of the material from 

coming into contact with pollutant, preventing decontamination. Figure 4.9 shows the results of 5 

mg of the various CTAB MoO2 samples in 10 mL MB (10 mg L-1) with and without exposure to 

visible light.  

 
Figure 4.9 Concentration (C/C0) vs. time (min.) for the decontamination of 10 mL MB by 5 mg 

of CTAB MoO2 sample. 

 

It is clear from the image that all of the samples are able to absorb MB without exposure 

to any visible light, and when the same sample was tested with exposure to visible light, the 
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performance increased in every case. It is also clear that as the concentration of CTAB increased, 

the decontamination ability of the material decreased.  This is not believed to be related to material 

composition, as XRD confirmed they are all the same, but could be surface morphology induced 

hydrophobicity, as shown by the surface roughness seen in the TEM images in Figure 4.10 [149, 

150].  

 
Figure 4.10 TEM images of the 5mM CTAB MoO2 microspheres. 

 

While the samples synthesized with a higher concentration were hydrophobic, they were 

still able to decontaminate some of the MB. This can be explained in two ways; first is that even 

if the particles are hydrophobic, there still some in direct contact with the surface of the MB, which 

allow for a small amount of decontamination close to the surface. The second way it can be 

explained is due to the set-up of this particular experiment. When the sample is first added, it forms 

a layer on top of the surface of the MB. As samples are collected from the beaker, the level in the 

beaker drops, causing the sample to eventually be physically forced to mix into the MB by coming 

into direct contact with the magnetic stirrer, as shown in Figure 4.11. 
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Figure 4.11 Schematic representation of how the hydrophobic particles are mixed into the MB 

solution. 

 

A summary of the decontamination results is shown in Table 4.2. It is clear from the table 

that while nano- and microspheres are capable of decontaminating MB from water, the most 

effective samples are plain nanoparticles with no hierarchy.  

Table 4.2 Decontamination results for 5mg of the various CTAB MoO2 samples in 10 mL MB (10 

mg L-1) 

Sample Amount of MB 

decontaminated 

Time 

Blank - No light exposure 0.04% 10 min. 

Blank - Visible light exposure 5.20% 10 min. 

0.1 mM MoO2 - No light exposure 100% 1 min. 

0.1 mM MoO2 - Visible light exposure 100% 1 min. 

0.5 mM MoO2 - No light exposure 100% 2 min. 

0.5 mM MoO2 - Visible light exposure 100% 2 min. 

1 mM MoO2 - No light exposure 100% 3 min. 

1 mM MoO2 - Visible light exposure 100% 3 min. 

2.5 mM MoO2 - No light exposure 100% 5 min. 

2.5 mM MoO2 - Visible light exposure 100% 5 min. 

5 mM MoO2 - No light exposure 99.81% 10 min. 

5 mM MoO2 - Visible light exposure 100% 10 min. 

10 mM MoO2 - No light exposure 35.00% 10 min. 

10 mM MoO2 - Visible light exposure 54.44% 10 min. 

15 mM MoO2 - No light exposure 26.25% 10 min. 

15 mM MoO2 - Visible light exposure 29.38% 10 min. 
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4.4 Conclusion 

 A variety of MoO2 were successfully synthesized using a hydrothermal method, with 

CTAB as a surfactant. The various samples were all proven to be made of the same material 

composition using XRD, however they possessed different morphologies, including nanoparticles, 

nanospheres, microspheres (hollow and solid), as shown by the SEM images. A formation 

mechanism was proposed for the formation of the nano- and microspheres, as well as an 

explanation for the apparent decrease in decontamination, which was cause by the particles 

becoming hydrophobic. All of the samples were able to decontaminate MB to some degree, and in 

every case the addition of the exposure to light sped up the rate at which MB was decontaminated. 

This phenomenon can only be explained by a combination of adsorption and photocatalysis. The 

most effective material was found to be the 0.1 mM CTAB MoO2 nanoparticles, which were able 

to decontaminate 100% of the MB within one minute, with or without exposure to light.   
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CHAPTER 5: HYDROTHERMAL SYNTHESIS OF MoO2 NANOPARTICLES  

 

DIRECTLY ONTO A COPPER SUBSTRATE AND THEIR ABILITY TO  

 

DECONTAMINATE WATER1 

 

5.1 Introduction 

 Most decontamination of water by a photocatalyst is done in what is called a slurry. In 

these cases, the active material used to decontaminate the solution is mixed directly into the 

solution to allow the reaction to occur. Since the mixture in continually mixing, the active material 

is almost always in constant with the pollutant, allowing for maximum effectiveness. The 

downside to this process is that once the active material has decontaminated the original pollutant 

in the water, the active material is now a pollutant of its own that must be removed from the water 

by filtration, centrifugation, etc.  

Herein, we describe a process to synthesize MoO2 directly onto a copper substrate, with no 

binder material. This could be a huge breakthrough in the world of Li-ion batteries, as currently 

anode materials are synthesized alone, and must then be coated onto a current collector in a spate 

step. The coating usually involves mixing the active material into a slurry, with a solvent, and a 

binder material, then coating the slurry onto a current collector (usually copper for anode materials) 

and then heated in an oven to drive out the solvent. Not only that, but the MoO2 coated copper 

                                                        
1 Michael McCrory, Ashok Kumar, Manoj K. Ram, “Hydrothermal Synthesis of MoO2 Nanoparticles Directly onto 

a Copper Substrate”, MRS Advances, 1, 1051-1054, reproduced with permission. 

Appendix A for copyright permission 
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substrate was able to decontaminate over 50% of the Mb within 10 minutes, with no exposure to 

light, and over 71% with exposure to light.  

5.2 Experimental 

 All materials were purchased from Sigma Aldrich and used without any modification 

unless otherwise noted. 

5.2.1 Synthesis of Molybdenum Dioxide (MoO2) onto a Copper Substrate 

To begin the experiment, a 1 x 1 cm (.25 mm thick) 99.9% pure copper substrate was 

treated in hydrochloric acid for 15 min, followed by an ultrasonic bath in ethanol for 5 min. Next, 

7.5 mL of deionized water and 2.5 mL of ethylene glycol were magnetically stirred, while 75 mg 

of MoO3 powder was added. After 10 minutes of mixing, the solution was placed into a teflon-

lined stainless steel pressure vessel along with the clean copper substrate. The pressure vessel was 

then sealed and placed into an oven at 180 °C 12 hours. After allowing the pressure vessel to 

naturally cool overnight and reach room temperature, the resulting solution was emptied into a 

beaker to retrieve the copper substrate. The copper substrate was then rinsed 3 times with DI water 

and ethanol before being placed in an oven to dry overnight. The weight of the copper before 

coating was approximately 250.5 mg, and after coating was approximately 252.5 mg. 

5.2.2 Characterization  

 The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy 

(SEM) and UV-visible spectrophotometry. For XRD measurements, a PANalytical X'Pert PRO 

diffractometer with Cu Kα radiation (λ=1.5406 Å) was used. For SEM measurements, a Hitachi 

SU-70 ultra-high resolution scanning electron microscope was used. And for UV-visible 

spectrophotometry, a Jasco J-530 UV-Vis Spectrophotometer was used.  

 



www.manaraa.com

52 

 

5.2.3 Water Decontamination Setup 

 To determine the ability of the MoO2 coated copper samples to decontaminate water, the 

samples were suspended in 10 mL of a methylene blue solution that was continuously stirred, with 

a concentration of 10 mg L-1. One set of experiments were conducted with exposure to visible light 

in the form of a 30 watt light with an intensity of 800W/m2, and another set were conducted without 

exposure to visible light, as shown in Figure 5.1. 

 
Figure 5.1 Step-by-step schematic of the typical MB degradation experiment, sample collection 

and analysis process for the MoO2 coated copper samples. 

 

5.3 Results and Discussion 

 A schematic of the formation mechanism of MoO2 nanoparticles directly onto a copper 

substrate is shown in Figure 5.2. MoO3, ethylene glycol, and water react under temperature and 

pressure to produce MoO3(OH)2, which is a volatile vapor phase that condensed onto the copper 

substrate, and subsequently dehydrated to form MoO2 [151-153]. 
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Figure 5.2 Formation mechanism of MoO2 nanoparticles onto a copper substrate. 

 

5.3.1 Scanning Electron Microscopy 

 Figure 5.3 shows SEM images of the MoO3 precursor powder with its platelet type 

structure. It is clear from Figure 5.3 that the MoO3 consists of large (>2µm) platelet shaped 

particles. 

 
Figure 5.3 SEM image of the MoO3 precursor. 
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Figure 5.4 shows the resulting MoO2 nanoparticle coated on a copper substrate. It is clear 

that the synthesized MoO2 coating consists of nanoparticles approximately 30-50 nm in diameter. 

There are clearly no larger MoO3 pieces could be found anywhere on the samples, indicating all 

of the MoO3 platelets had converted to MoO2 nanoparticles, as later confirmed by the XRD 

analysis. 

 
Figure 5.4 SEM images of the MoO2 coated copper. 

 

5.3.2 X-ray Diffraction (XRD) 

 The MoO2 coated copper substrate was analyzed using grazing incident angle X-ray 

diffraction (GIXRD). The coated samples were scanned with a fixed incident angle of 1°, while 

the pure Cu and MoO3 were scanned using regular powder diffraction mode. Figure 5.5 shows the 

XRD patterns for the materials used in this experiment. It should be noted that the patterns are not 

displayed at the same scale for clarity. It is clear from Figure 5.5 that the synthesized films show 

a completely different XRD pattern when compared to the MoO3 precursor. The coated samples 

show no indication of MoO3 peaks, indicating a full conversion of MoO3 to MoO2. The MoO2 

coated sample had diffraction peaks at 26.1°, 36.8°, 43.4°, 50.5°, 53.3° and 74.1°. The diffraction 

peaks at 26.1°, 36.8°, and 53.3° correspond to the (-111), (200) and (022) planes of monoclinic 
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MoO2, respectively. The diffraction peaks seen at 43.4°, 50.5° and 74.1° are from the Cu substrate, 

and correspond to the (111), (200), and (220) planes of cubic copper, respectively. 

 
Figure 5.5 XRD patterns for a) copper substrate, b) MoO3, c) MoO2, and d) MoO2 coated copper. 

5.3.3 Decontamination 

 The results of the decontamination experiments are shown in Figure 5.6. It is clear from 

the image that the MoO2 coated copper substrate is very effective at decontaminating MB from 

water. The MB degraded less than 0.05% during 10 minutes with no light exposure, and degraded 

5.1% with exposure to light for 10 minutes. The coated samples were able to adsorb 57.5% of the 

MB with no exposure to light, while it was able to decontaminate 71.7% of the MB with light 

exposure.  
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Figure 5.6 Concentration (C/C0) vs. time (min.) for the decontamination of 10 mL MB by the 

MoO2 coated copper substrate. 

 

5.4 Conclusion 

 MoO2 nanoparticles were successfully synthesized onto a copper substrate for the first 

time, as proven by XRD and SEM. The MoO2 coated copper substrates were then tested for their 

ability to decontaminate MB from water. The MoO2 coated copper substrates were not able to 

remove 100% of the MB, however it still was able to decontaminate over 50% of the MB from the 

water in 10 minutes with no light exposure, and over 70% removed in 10 minutes with light 

exposure.  
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CHAPTER 6: CONCLUSION 

 

Nanostructured AM-MoO3 was synthesized and used as a precursor in a comparative study, 

along with MoO3, to synthesize AM-MoO2 and MoO2, respectively. XRD confirmed a full 

reduction from orthorhombic MoO3 to monoclinic MoO2 in all cases. Time dependent experiments 

showed the MoO3 is fully reduced within 2 hours. During the decontamination experiments, all of 

the materials were proven to be excellent absorbent materials, as well as photocatalysts.  Both 

MoO2 and AM-MoO2 performed almost exactly the same, with both samples being able to remove 

100% of the MB in one minute with light, and in two minutes without light. 

The morphology of MoO2 was controlled in a comparative study by varying the 

concentration of CTAB present during the hydrothermal reaction. Samples synthesized with 0.1-

0.5 mM CTAB formed nanoparticles, sample with 1-2.5 mM CTAB formed nanospheres, samples 

with 5mM formed solid microspheres, samples with 10 mM CTAB formed hollow microspheres, 

and samples with 15 mM CTAB formed microspheres that were highly agglomerated. A formation 

mechanism for the formation of the nano- and microspheres was proposed with a combination of 

aggregation and Ostwald ripening. XRD confirmed a full reduction from orthorhombic MoO3 to 

monoclinic MoO2, along with no residual peaks from the CTAB that was present during the 

reaction. During the decontamination experiments, some of the materials were found to be 

hydrophobic. The apparent decrease in decontamination performance was proposed to be caused 

by surface morphology induced hydrophobicity. The decontamination results once again showed 

that the synthesized MoO2 materials were not only photocatalysts, but adsorbents as well. Samples 
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synthesized with 0.1-5 mM CTAB were able to remove 100% of the MB in 10 minutes or less. 

Samples synthesized with 10 mM CTAB were able to remove 54.4% and 35% of the MB in 10 

minutes, with and without light, respectively. Samples synthesized with 15 mM CTAB were able 

to remove 29.4% and 26.3% of the MB in 10 minutes, with and without light, respectively. A 

mechanism to describe why the hydrophobic particles were still able to decontaminate the water 

was proposed to be caused by coming into direct contact with the magnetic stirrer as the water 

level dropped due to sample collection.  

MoO2 nanoparticles were successfully synthesized onto a copper substrate, in a single step. 

We believe this is the first report of such a synthesis method, and that it can be extended to other 

materials and other substrates. XRD confirmed a full reduction of orthorhombic MoO3 to 

monoclinic MoO2, as well as confirmed there were no other by products that formed on the surface 

of the copper during the synthesis process. SEM images of the MoO2 coated copper substrate 

showed uniform nanoparticles ranging from 30-50 nm. The MoO2 coated copper substrate was 

able to decontaminate 57.5% and 71.7% of the MB from water in 10 minutes, with and without 

exposure to light, respectively.  

6.1 Future Work 

 MoO2 is a relatively new material in the world of water decontamination, there needs to be 

research done into the effects of MoO2 on the environment to determine its toxicity and viability 

to safely decontaminate water. Work also needs to be done to look at the recyclability of the MoO2 

materials, as well as its ability to decontaminate other dyes and organic pollutants. The coating 

process for MoO2 should be optimized to prevent as much of the material from detaching from the 

substrate as possible. This would decrease the amount of material that must be removed from the 

water before it is useable. Tests should also be conducted to see if the coated copper substrate still 
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has any of the antimicrobial properties associated with copper, as this would help to further 

decontaminate the water. 
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